r - Compute stepwise regresion Model containing intercept, linear terms, and all products of pairs of distinct predictors -


i have dataframe df

df<-structure(list(p = c(794.102395099402, 1299.01021921817, 1219.80731174175,  1403.00786976395, 742.749487463385, 340.246973543409, 90.3220586792255,  195.85557320714, 199.390867672674, 191.4970921278, 334.452413539092,  251.730350291822, 235.899165861309, 442.969718728163, 471.120193046119,  458.464154601097, 950.298132134912, 454.660729622624, 591.212003320456,  546.188716055825, 976.994105334083, 1021.67000560164, 945.965200876724,  932.324768081307, 3112.60002304117, 624.005047807736, 0, 937.509240627289,  892.926195849975, 598.564015734103, 907.984807726741, 363.400837339461,  817.629824627294, 2493.75851182081, 451.149000503123, 1028.41455932241,  615.640039284434, 688.915621065535, nan, 988.21297, nan, 394.7,  277.7, 277.7, 492.7, 823.6, 1539.1, 556.4, 556.4, 556.4), t = c(11.7087701201175,  8.38748953516909, 9.07065637842101, 9.96978059247473, 2.87026334756687,  -1.20497751697385, 1.69057148825093, 2.79168506923385, -1.03659741363293,  -2.44619473778322, -1.0414166493637, -0.0616510891024765, -2.19566614081763,  2.101408628412, 1.30197334094966, 1.38963309876057, 1.11283280896495,  0.570385633957982, 1.05118063842584, 0.816991857384802, 8.95069454902333,  6.41067954598958, 8.42110173395973, 13.6455092557636, 25.706509843239,  15.5098014530832, 6.60783204117648, 6.27004335176393, 10.0769600264915,  3.05237224011361, 7.52869186722913, 11.2970127691776, 6.60356510073103,  7.3210245298803, 8.4723724171517, 21.6988324356057, 7.34952593890056,  6.04325232771032, nan, 25.990913731, nan, 1.5416666667, 15.1416666667,  15.1416666667, 0.825, 4.3666666667, 7.225, -2.075, -2.075, -2.075 ), = c(76.6, 52.5, 3.5, 15, 71.5, 161.833333333333, 154, 72.5,  39, 40, 23, 14.5, 5.5, 78, 129, 73.5, 100, 10, 3, 29.5, 65, 44,  68.5, 56.5, 101, 52.1428571428571, 66.5, 1, 106, 36.6, 21.2,  10, 135, 46.5, 17.5, 35.5, 86, 70.5, 65, 97, 30.5, 96, 79, 11,  162, 350, 42, 200, 50, 250), y = c(1135.40733061247, 2232.28817154825,  682.15711101488, 1205.97307573068, 1004.2559099408, 656.537378609781,  520.796355544007, 437.780508459633, 449.167726897157, 256.552344558528,  585.618137514404, 299.815636674633, 230.279491515383, 1051.74875971674,  801.07750760983, 572.337961145761, 666.132923644351, 373.524159859929,  128.198042456082, 528.555426408071, 1077.30188477292, 1529.43757814094,  1802.78658590423, 1289.80342084379, 3703.38329098125, 1834.54460388103,  1087.48954802548, 613.15010408836, 1750.11457900004, 704.123482171384,  1710.60321283154, 326.663507855032, 1468.32489464969, 1233.05517321796,  852.500007182098, 1246.5605930537, 1186.31346316832, 1460.48566379373,  2770, 3630, 3225, 831, 734, 387, 548.8, 1144, 1055, 911, 727,  777)), .names = c("p", "t", "a", "y"), row.names = c(na, -50l ), class = "data.frame") 

i want stepwise regresion analysis including intercept, linear terms, , products of pairs of distinct predictors. far have managed fixed model effect package caret (see below)

step <- train(y~ p+t+a, data=df,                            preprocess= c("center", "scale"),                            method = "lmstepaic",                            traincontrol(method="cv",repeats = 10), na.rm=t) 

does know how can compute regression model intercept, linear terms, , products of pairs of distinct predictors?

step <- train(y~ (p+t+a)^2, data=df,                            preprocess= c("center", "scale"),                            method = "lmstepaic",                            traincontrol(method="cv",repeats = 10), na.rm=t) 

Comments

Popular posts from this blog

How to show in django cms breadcrumbs full path? -

php - Invalid Cofiguration - yii\base\InvalidConfigException - Yii2 -

ruby on rails - npm error: tunneling socket could not be established, cause=connect ETIMEDOUT -